EX1800-3 Workshop Manual

-CONTENTS-

Group 1 Precautions for Disasse and Assembling	mbling
Precautions for Disassembling and	
Assembling	W1-1-1
Group 2 Tightening	
Tightening Torque Specification	W1-2-1
Torque Chart	W1-2-2
Pining Joint	W1-2-5

(Blank)			

PRECAUTIONS FOR DISASSEMBLING AND ASSEMBLING

Precautions for Disassembling and Assembling

· Clean the Machine

Thoroughly wash the machine before bringing it into the shop. Bringing a dirty machine into the shop may cause machine components to be contaminated during disassembling/assembling, resulting in damage to machine components, as well as decreased efficiency in service work.

Inspect the Machine

Be sure to thoroughly understand all disassembling/assembling procedures beforehand, to help avoid incorrect disassembling of components as well as personal injury.

Check and record the items listed below to prevent problems from occurring in the future.

- The machine model, machine serial number, and hour meter reading.
- Reason for disassembly (symptoms, failed parts, and causes).
- Clogging of filters and oil, water or air leaks, if any.
- · Capacities and condition of lubricants.
- · Loose or damaged parts.
- Prepare and Clean Tools and Disassembly Area

Prepare the necessary tools to be used and the area for disassembling work.

· Precautions for Disassembling

- To prevent dirt from entering, cap or plug the removed pipes.
- Before disassembling, clean the exterior of the components and place it on a work bench.
- Before disassembling, drain gear oil from the reduction gear.
- Be sure to provide appropriate containers for draining fluids.
- · Use matching marks for easier reassembling.
- Be sure to use the specified special tools, when instructed.
- If a part or component cannot be removed after removing its securing nuts and bolts, do not attempt to remove it forcibly. Find the cause(s), then take the appropriate measures to remove it.
- Orderly arrange disassembled parts. Mark and tag them as necessary.
- Store common parts, such as bolts and nuts with reference to where they are to be used and in a manner that will prevent loss.
- Inspect the contact or sliding surfaces of disassembled parts for abnormal wear, sticking, or other damage.
- Measure and record the degree of wear and clearances.

· Precautions for Assembling

- Be sure to clean all parts and inspect them for any damage. If any damage is found, repair or replace it.
- Dirt or debris on the contact or sliding surfaces may shorten the service life of the machine. Take care not to contaminate any contact or sliding surfaces.
- Be sure to replace O-rings, backup rings, and oil seals with new ones once they are disassembled.
 Apply a film of grease before installing.
- Be sure that liquid-gasket-applied surfaces are clean and dry.
- If an anti-corrosive agent has been used on a new part, be sure to thoroughly clean the part to remove the agent.
- · Utilize matching marks when assembling.
- Be sure to use the designated tools to assemble bearings, bushings and oil seals.
- Keep a record of the number of tools used for disassembly/assembly. After assembling is complete, count the number of tools, so as to make sure that no tools are missing.

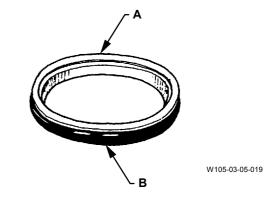
Bleeding Air from Hydraulic System

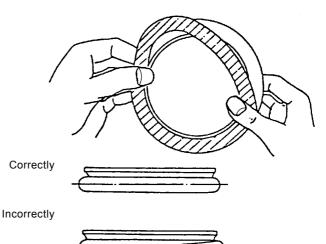
When hydraulic oil is drained, the suction filter or the suction lines are replaced, or the removal and installation of the pump, swing motor, travel motor or cylinder is done, bleed air from the hydraulic system in the following procedures:

Bleeding Air from Hydraulic Pump

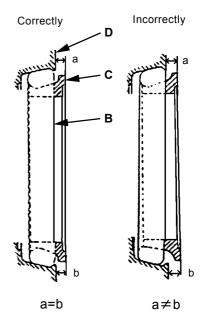
IMPORTANT: If the engine is started with air trapped in the hydraulic pump housing, damage to the pump may result.

Be sure to bleed air before starting the engine.


- Remove the air bleeding plug from the top of the pump and fill the pump housing with hydraulic oil.
- After the pump housing is filled with hydraulic oil, temporarily tighten the plug. Then, start the engine and run at slow idle speed.
- Slightly loosen the plug to bleed air from the pump housing until hydraulic oil oozes out.
- · After bleeding all the air, securely tighten the plug.
- · Bleeding Air from Travel Motor/Swing Motor
 - With the drain plug/hose on travel motor/swing motor removed, fill the motor case with hydraulic oil.
- · Bleeding Air from Hydraulic Circuit
 - After refilling hydraulic oil, start the engine. While
 operating each cylinder, swing motor and travel
 motor evenly, operate the machine under light
 loads for 10 to 15 minutes. Slowly start each operation (never fully stroke the cylinders during initial operation stage). As the pilot oil circuit has an
 air bleed device, air trapped in the pilot oil circuit
 will be bled while performing the above operation
 for approx. 5 minutes.
 - Reposition the front attachment to check hydraulic oil level.
 - Stop the engine. Recheck hydraulic oil level. Replenish oil as necessary.



M104-07-021


Floating Seal Precautions

- In general, replace the floating seal with a new one.
 - If the floating is to be reused, follow these procedures:
 - Keep seal rings together as a matched set with seal ring faces together. Insert a piece of cardboard to protect surfaces.
 - (2) Check seal ring face (C) for scuffing, scoring, corrosion, deformation or uneven wear.
 - (3) Check O-ring (B) for tears, breaks, deformation or hardening.
- 2. If incorrectly assembled, oil leakage or damage will occur. Be sure to do the following, to prevent trouble.
 - Clean floating seal (A) and seal mounting bores with cleaning solvent.
 Use a wire brush to remove mud, rust or dirt.
 After cleaning, thoroughly dry parts with compressed air.
 - (2) Clean the floating seal and seal mounting bores, as dust on them tends to enter the floating seal when installing it.
 - (3) Check that the O-ring is not twisted, and that it is installed correctly on the seal ring.
 - (4) After installing the floating seal, check that seal face (C) is parallel with seal mounting bores ring face (D) by measuring the distances (C) and (D) at point (a) and (b), as illustrated. If these distances differ, correct the O-ring seating.

W105-03-05-020

W110-03-05-004

MAINTENANCE STANDARD TERMINOL-OGY

"Standard"

- 1. Dimension for parts on a new machine.
- 2. Dimension of components or assemblies adjusted to specification.

Both dimensions are shown with tolerances as necessary.

"Allowable Limit"

- 1. Normal machine performance cannot be accomplished after exceeding this limit.
- 2. Repair or replacement is required before reaching this limit.

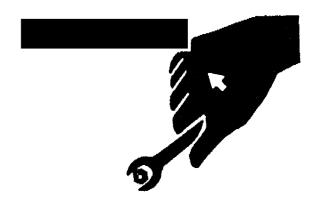
Machine performance will decrease, and maintenance and down time expense will increase as machine operating hours accumulate. It is recommended that parts are repaired or replaced before reaching the "Allowable Limit".

TIGHTENING TORQUE SPECIFICATIONS

No.	Descriptions	Bolt Dia	Q'ty	Wrench Q'ty Size		Torque		
NO.	Descriptions	mm		(mm)	N·m	kgf⋅m	lbf∙ft	
1	Engine cushion rubber mounting bolt	33	4	50	2550	260	1880	
		22	4	32	740	75	540	
2	Engine bracket mounting bolt	27	24	41	1030	105	760	
		18	4	27	390	40	290	
3	Hydraulic oil tank mounting bolt	30	8	46	1420	145	1050	
4	Fuel tank mounting bolt	30	12	46	1420	145	1050	
5	Pump transmision mouting bolt	1/2-13UNC	28	19	118	12	87	
6	Pump device mounting bolt	20	24	Hexagonbar wrench 17	390	40	290	
7	Gear pump mounting bolt	14	4	Hexagonbar wrench 12	137	14	101	
8	Air-con. Compressor drive pump mounting bolt	14	4	Hexagonbar wrench 12	137	14	101	
9	Control valve mounting nut	20	8	30	390	40	290	
10	Swing device mounting bolt	33 24	48 48	50 36	2550 690	260 70	1880 510	
11	Swing motor mounting bolt	20	8	30	390	40	290	
12	Battery mounting bolt	10	16	17	19.5	2	14.5	
13	Cab mounting bolt	18	8	27	295	30	215	
14	Cab bed mounting bolt	16	36	24	205	21	152	
15	Swing bearing mounting bolt to upperstructure Swing bearing mounting bolt to undercarriage	45 45	58 60	70 70	4710 4710	480 480	3470 3470	
16	Counterweight mounting nut	45	7	70	3920	400	2890	
17	Radiator mounting nut	27	8	41	1030	105	760	
	Travel device mounting bolt (A)	22	32	32	740	75	540	
18	(B)	33	64	50	2550	260	1880	
	(C)	30	60	46	1910	195	1410	
19	Travel motor mounting bolt	20	8	30	390	40	290	
20	Upper roller mounting bolt	20	25	30	390	40	290	
21	Lower roller mounting bolt	30	64	46	1910	195	1410	
22	Track guard mounting bolt	30	12	46	1910	195	1410	
23	Track shoe bolt	33	392	50	3190	325	2350	
24	Side frame mounting bolt	45	68	70	4710	480	3470	
6 -	Loader front pin-retaining bolt (A)	20	32	30	390	40	290	
25	Loader front pin-retaining bolt (B) Loader front pin-retaining bolt (C)	16 24	4 4	24 36	205 690	21 70	152 510	
	Backhoe front pin-retaining bolt (C)	20	24	30	390	40	290	
26	Backhoe front pin-retaining bolt (B)	16	12	24	205	21	152	

NOTE: (1) Apply lubricant (e.g. white Zinc B dissolved into spindle oil) to bolts and nuts to stabilize friction coefficient of them.

(2) Make sure bolt and nut threads are clean before installing.


TORQUE CHART

CAUTION: Use tools appropriate for the work to be done. Makeshift tools and procedures can create safety hazards. For loosening and tightening nuts and bolts, use the correct tools. Avoid bodily injury caused by slipping wrenches.

Bolt Types

Tighten nuts or bolts correctly to torque specifications. Four kinds of bolts, hexagon bolts T, H, M and socket bolt, each made of different material, are used. Make sure to employ the correct bolts and tighten them to specification when assembling the machine or components.

SA-040

Hexagon T Bolt

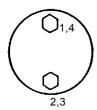
Hexagon H Bolt

Hexagon M Bolt

Socket Bolt

W105-01-01-007

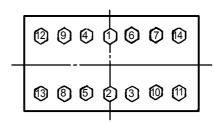
Specified Tightening Torque Chart


Bolt	Wrench	Hexagon Wrench	ТВо	olt, Socket	bolt		H Bolt			M Bolt	
Dia.	Size	Size	N⋅m	kgf⋅m	lbf∙ft	N⋅m	kgf⋅m	lbf∙ft	N⋅m	kgf⋅m	lbf∙ft
M 8	13	6	29.5	3	22	19.5	2	14.5	9.8	1	7.2
M 10	17	8	64	6.5	47	49	5	36	19.5	2	14.5
M 12	19	10	108	11	80	88	9	65	34	3.5	25.5
M 14	22	12	175	18	130	137	14	101	54	5.5	40
M 16	24	14	265	27	195	205	21	152	78	8	58
M 18	27	14	390	40	290	295	30	220	118	12	87
M 20	30	17	540	55	400	390	40	290	167	17	123
M 22	32	17	740	75	540	540	55	400	215	22	159
M 24	36	19	930	95	690	690	70	505	275	28	205
M 27	41	19	1370	140	1010	1030	105	760	390	40	290
M 30	46	22	1910	195	1410	1420	145	1050	540	55	400
M 33	50	24	2550	260	1880	1910	195	1410	740	75	540
M 36	55	27	3140	320	2310	2400	245	1770	930	95	690

- IMPORTANT: (1) Apply lubricant (i. e. white zinc B dissolved into spindle oil) to nuts and bolts to stabilize their friction coefficients.
 - (2) Torque tolerance is ± 10 %.
 - (3) Be sure to use bolts of correct length. Bolts that are too long cannot be tightened, as the bolt tip comes into contact with the bottom of the bolt hole. Bolts that are too short cannot develop sufficient tightening force.
 - (4) The torques given in the chart are for general use only. Do not use these torques if a different torque is given for a specific application.
 - (5) Make sure that the nut and bolt threads are clean before installing. Remove dirt or corrosion, if any.

Bolt Tightening Order

When tightening two or more bolts, tighten them alternately, as shown, to ensure even tightening.


Equally tighten upper and lower alternately

Tighten diagonally

Tighten from center and diagonally

W105-01-01-003

Service Recommendations for Split Flange

- IMPORTANT: (1) Be sure to clean and inspect sealing surfaces. Scratches/roughness cause leaks and seal wear.

 Unevenness causes seal extrusion. If defects cannot be polished out, replace the component.
 - (2) Be sure to use only specified Orings. Inspect O-rings for any damage. Take care not to file Oring surfaces. When installing an O-ring into a groove, use grease to hold it in place.
 - (3) Loosely assemble split flange halves. Make sure that the split is centrally located and perpendicular to the port. Hand-tighten the bolts to hold the parts in place. Take care not to pinch the O-ring.
 - (4) Tighten bolts alternately and diagonally, as shown, to ensure even tightening.
 - (5) Do not use air wrenches. Using an air wrench often causes tightening of one bolt fully before tighten the others, resulting in damage to O-rings or uneven tightening of bolts.

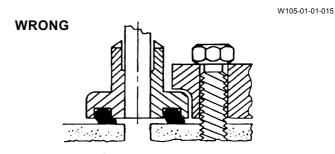
Nut and Bolt Lockings

Lock Plate

IMPORTANT: Do not reuse lock plates. Do not try to bend the same point twice.

Cotter Pin

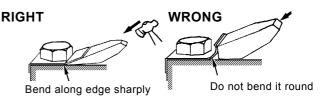
IMPORTANT: Do not reuse cotter pins. Match the holes in the bolt and nut while

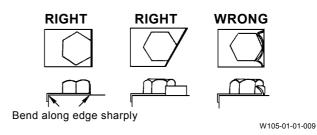

tightening, not while loosening.

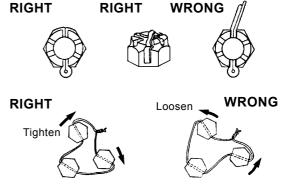
• Lock Wire

IMPORTANT: Apply wire to bolts in the bolttightening direction, not in the bolt-

loosening direction.





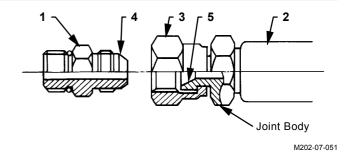

W105-01-01-016

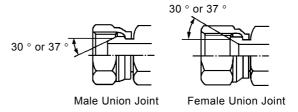
W105-01-01-008

W105-01-01-010

PIPING JOINT

Pipe Thread Connection/Union Joint Tightening Torque Specifications


Union Joint


Metal sealing faces (4) and (5) of adaptor (1) and hose (2) fit together to seal pressure oil. Union joints are used to join small-diameter lines.

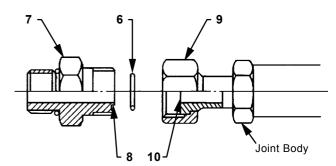
IMPORTANT: (1) Do not over-tighten union nut (3).

Excessive force will be applied to metal sealing surfaces (4) and (5), possibly cracking adaptor (1). Be sure to tighten union nut (3) to specifications.

(2) Scratches or other damage to sealing surfaces (4) or (5) will cause oil leakage at the joint. Take care not to damage them when connecting/disconnecting.

W105-01-01-017

Type	Wrenc	Tightening Torque			
туре	Union Nut	Joint Body	N⋅m	kgf⋅m	lbf∙ft
30 ° Male Union	19	19	59	6	43
Joint	22	22	98	10	72
	27	27	118	12	87
	36	36	235	24	134
	41	41	295	30	215
	50	50	490	50	360
	60	60	670	68	490
	70	70	980	100	720
37 ° Female	19	17	44	4.5	32.5
Union Joint	22	19	59	6	43
	27	22	118	12	87
	36	30, 32	235	24	134
	41	36	295	30	215
	50	46	490	50	360


NOTE: Tightening torque for the non-union type 37° male joint is the same as the 37° female union joint.

O-ring Seal Joint

O-ring (6) seats against the end face of adaptor (7) to seal pressure oil.

IMPORTANT: (1) Be sure to replace O-ring (6) with a new one when reconnecting.

- (2) Before tightening union nut (9), confirm that O-ring (6) is seated correctly in O-ring groove (8). Tightening union nut (9) with O-ring (6) displaced will damage O-ring (6), resulting in oil leakage.
- (3) Take care not to damage O-ring groove (8) or sealing face (10). Damage to O-ring (6) will cause oil leakage.
- (4) If union nut (9) is found to be loose, causing oil leakage, do not tighten it to stop the leak. Instead, replace O-ring (6) with a new one, then tighten union nut (9) after confirming that O-ring (6) is securely seated in place.

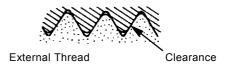
M104-07-033

Wrenc	Tightening Torque			
Union Nut	Joint Body	N⋅m	kgf⋅m	lbf∙ft
19	17	59	6	43
22	19	98	10	72
27	22	118	12	87
36	30, 32	235	24	134
41	36	295	30	215
50	46	490	50	360

Screwed-In Connection

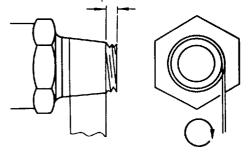
IMPORTANT: Many types of screwed-in connections are used for hose connections.

Be sure to confirm that the thread pitch and thread type (tapered or straight) are the correct type before


using any screw-in connection.

Male Tapered Thread Male Straight Thread

W105-01-01-018


Male Tapered Thread					
Wrench	Tight	tening To	rque		
Joint Body	N·m kgf·m lbf·ft				
17, 19	59	6	43		
19, 22	98	10	72		
27, 22	118	12	87		
36, 32	235	24	134		
41	295	30	215		
50	490	50	360		
60	670	68	490		
70	980	100	720		

Internal Thread

W105-01-01-019

Leave one to two pitch threads uncovered

M114-07-041

Seal Tape Application

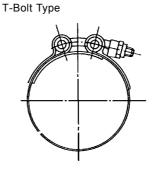
Seal tape is used to seal clearances between male and female threads, so as to prevent any leakage between threads.

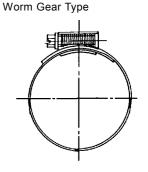
Be sure to apply just enough seal tape to fill up thread clearances. Do not overwrap.

Application Procedure

Confirm that the thread surface is clean, free of dirt or damage.

Apply seal tape around threads as shown. Wrap seal tape in the same direction as the threads.


Low-Pressure-Hose Clamp Tightening Torque


Low-pressure-hose clamp tightening torque differs depending on the type of clamp.

See below for correct tightening torque of each type of low-pressure-hose clamp.

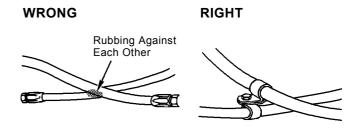
T-Bolt Type Band Clamp: 4.4 N·m (0.45 kgf·m, 3.25 lbf·ft) Worm Gear Type Band Clamp:

5.9 to 6.9 N·m (0.6 to 0.7 kgf·m, 4.3 to 5.1 lbf·ft)

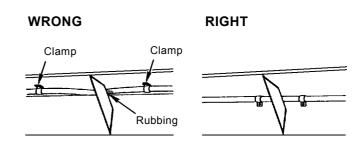
M114-07-042

M114-07-043

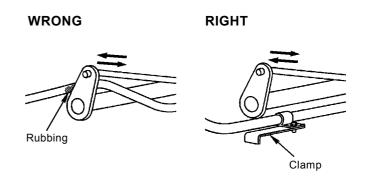
Connecting Hose


CAUTION:

- (1) When replacing hoses, be sure to use only genuine Hitachi service parts. Using hoses other than genuine Hitachi hoses may cause oil leakage, hose rupture or separation of fitting, possibly resulting in a fire on the machine.
- (2) Do not install hoses kinked. Application of high oil pressure, vibration, or an impact to a kinked hose may result in oil leakage, hose rupture or separation of fitting. Utilize print marks on hoses when installing hoses to prevent hose from being installed kinked.
- (3) If hoses rub against each other, wear to the hoses will result, leading to hose rupture. Take necessary measures to protect hoses from rubbing against each other.


Take care that hoses do not come into contact with moving parts or sharp objects.

WRONG RIGHT


W105-01-01-011

W105-01-01-012

W105-01-01-013

W105-01-01-014

SECTION 2 UPPERSTRUCTURE

-CONTENTS-

Group i Cab	
Windowpane Dimensions W2-1-1	Main Hydraulic Line
	Locatinos (Backhoe) W2-3-6
Group 2 Pump Device	Disassemble and Assemble
Remove and Install	Control Valve W2-3-7
Pump Device W2-2-1	
Disassemble	Group 4 Swing Device
Pump Transmission W2-2-8	Remove and Install Swing Device W2-4-1
Assemble	Disassemble Swing Device W2-4-3
Pump Transmission W2-2-12	Assemble Swing Device W2-4-11
Disassemble Main Pump W2-2-16	Disassemble Swing Motor W2-4-21
Assemble Main Pump W2-2-20	Assemble Swing Motor W2-4-23
Maintenance Standards W2-2-24	Maintenance Standards W2-4-27
Disassemble	Disassemble and Assemble
Main Pump Regulator W2-2-26	Relief Block W2-4-28
Assemble	
Main Pump Regulator W2-2-32	Group 5 Pilot Valve
Disassemble	Remove and Install
Swing Pump Regulator W2-2-38	Front and Swing Pilot Valves W2-5-1
Assemble	Remove and Install Travel and Bucket
Swing Pump Regulator W2-2-44	Pilot Valves W2-5-3
Disassemble and Assemble	Pilot Line Connections
Triple Gear Pump W2-2-50	(Loading Shovel) W2-5-5
Disassemble and Assemble	Pilot Line Connections
Center Gear Pump W2-2-52	(Backhoe)W2-5-6
	Disassemble and Assemble
Group 3 Control Valve	Pilot Valves W2-5-8
Remove and Install	
Control Valve W2-3-1	Group 6 Pilot Shut-Off Valve
Pilot Line	Remove and Install Pilot
Locations (Loading Shovel) W2-3-3	Shut-Off Valve W2-6-1
Main Hydraulic Line	Disassemble Pilot Shut-Off Valve W2-6-3
Locations (Loading Shovel) W2-3-4	Assemble Pilot Shut-Off Valve W2-6-5
Pilot Line Locations (Backhoe) W2-3-5	

Group 7 Solenoid Valve Remove and Install	
	W2-7-1
Solenoid Valves Disassemble and Assemble Travel Spe	
Change Solenoid Valve and Swing	eu
ě .	W2-7-3
Disassemble and Assemble Swing	VV Z-1-3
Inter Lock Solenoid Valve	\\\\O 7 4
inter Lock Solenoid valve	VV Z-7-4
Group 8 Fuel Cooler Fan Motor	
Remove and Install	
Fuel Cooler Fan Motor	W2-8-1
Disassemble and Assemble	
Fuel Cooler Fan Motor	W2-8-3
Group 9 Compressor Drive Motor	
Remove and Install	
Compressor Drive Motor	W2-9-1
Disassemble and Assemble	
Compressor Drive Motor	W2-9-3
Group 10 Air Conditioner	
Work After Component	
Replacement V	V2-10-1
Add Compressor Oil V	
Charge Air Conditioner with	
Refrigerant V	V2-10-2
Group 11 Shuttle Valve	
Remove and Install	
Multi Shuttle Valve V	

BUY NOW

Then Instant Download the Complete Manual Thank you very much!